
Generalized noiseless quantum codes utilizing quantum enveloping algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 1423

(http://iopscience.iop.org/0305-4470/34/7/314)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 02/06/2010 at 09:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 1423–1437 www.iop.org/Journals/ja PII: S0305-4470(01)13092-1

Generalized noiseless quantum codes utilizing
quantum enveloping algebras

Micho Durdevich1, Hanna E Makaruk2 and Robert Owczarek2

1 Instituto de Matematicas, UNAM, Area de la Investigacion Cientifica, Circuito Exterior, Ciudad
Universitaria, Mexico DF, CP 04510, Mexico
2 MS E517, E-ET, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 6 April 2000, in final form 23 November 2000

Abstract
A generalization of the results of Rasetti and Zanardi concerning avoiding errors
in quantum computers by using states preserved by evolution is presented. The
concept of dynamical symmetry is generalized from the level of classical Lie
algebras and groups, to the level of a dynamical symmetry based on quantum
Lie algebras and quantum groups (in the sense of Woronowicz). An intrinsic
dependence of the concept of dynamical symmetry on the differential calculus
(which holds also in the classical case) is stressed. A natural connection between
quantum states invariant under a quantum group action, and quantum states
preserved by the dynamical evolution, is discussed.

PACS numbers: 0367L, 0220S

1. Introduction

Quantum computation is a new and quickly developing area of science. Its power comes
from using quantum parallelism of computations. This new paradigm for computation was
envisioned by Feynman [1]. For many years quantum computation looked to be an unrealistic
dream. The reason is unavoidable decoherence due to the interaction of quantum devices
with a classical environment, which destroys quantum coherent states. Then the advantage of
parallelism is lost, and this makes quantum computation impossible. This situation changed
radically when the quantum error correcting codes were invented [2–4]. This fact plus
remarkable progress in experimental manipulation with individual qubits makes the dream
a possibility of coming true.

In this paper we study a special implementation of so-called noiseless quantum codes, also
known as error avoiding quantum codes [5]. Such codes were proposed in [6,7] as an alternative
or, more likely, a supplement to the error correcting quantum codes. In [6, 7] error avoiding
quantum codes were built using group theoretic methods. The idea is that among quantum states
of the system there exist distinguished ones which, despite interaction with the environment,
do not underlie decoherence. An important assumption was that qubits of the quantum register
interact with a coherent environment. This assumption, besides the assumption on dynamical
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symmetry of the system, turned out to be essential for the introduction of the states protected
against decoherence. Namely, it is possible to introduce collective variables describing the
qubits composing the register. The singlet state of the qubits turned out to be protected against
corruption.

An attempt to describe a more general situation was made in [8]. There the semigroup
technique was used to describe the general evolution of the system interacting with the
environment. In comparison to [6,7], the generalization consisted of a consideration of various
degrees of coherence of the environment on distances of the order of the length of the register.
In addition to full coherence, lack of any coherence and partial coherence were considered.
Basic results on error protected states are similar to the ones obtained in [6, 7]. Additional
noises were considered, and it was shown that their influence on the error protected states
is negligible up to the first order of a small parameter characterizing the noise. Performing
quantum computations with the error protected states was shown to be realistic.

In [5] general criteria for error avoiding quantum codes were formulated. First, the existing
codes were divided into three groups: error correcting codes, error avoiding codes and error
preventing codes. Error correcting codes detect and correct errors. Error preventing codes
only detect errors, without correcting them. After this classification was made the general
theory of error avoiding codes was formulated, in the manner following [9], where the general
theory of error correcting quantum codes was presented. It was found that the error avoiding
codes are derived from the subspaces of the Hilbert space that are common eigenspaces of the
operatorsAa describing the evolution of the system. If ρi and ρf are the initial and final density
matrices of the system, respectively, then, under the assumption that initially the system is not
entangled with the environment, ρf = ∑

a AaρiA
+
a , where

∑
a A

+
aAa = I .

From [9] the conditions for the error correcting codes are known. Namely, if the vectors
|i〉 form an orthonormal basis of the code, the condition

〈i|A+
aAb|j〉 = γabδij (1.1)

should be satisfied, where γab is a Hermitian matrix. All known error correcting codes have
γab nondegenerate. The matrix is then expressible, after some unitary redefinition of Aa , as a
diagonal matrix with positive entries.

As shown in [5] error avoiding codes also satisfy (1.1) but are maximally degenerate (in
the diagonal form only one diagonal element is different from zero). Moreover the matrix γab
is expressible as γab = γ ∗

a γb, where γa are eigenvalues of the respective operators Aa for the
states from the code. This general approach does not use the group theoretic language, so that
we do not know if there exist error avoiding codes of different origins than the group theoretic
(or quantum group theoretic) one. It shows, however, the usefulness of the error avoiding
codes for quantum computing (especially when used simultaneously with the error correcting
codes).

The aim of this paper is to study error avoiding codes in a more general framework than
the group theoretic one. More precisely, we shall discuss the problematics of error avoiding
codes in the framework of quantum groups.

Our motivation is that the quantum group framework enables the introduction of a more
general dynamical symmetry of the system, compared to the standard group theoretic one. By
construction, it covers also the dynamical symmetry connected with classical groups, since
the classical groups are all special cases of quantum groups. In this way we hope to take into
account certain fluctuations from the exact group theoretic dynamical symmetries required by
the standard noiseless codes.

In [6,7] there was expressed a hope that deviations from the proposed ideal situation should
not destroy too much of the quantum coherence and consequently the error protected states
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should become ‘almost error protected’ under these conditions. Our considerations show there
exist particular perturbations for which the error protected states ‘remain’ exactly protected
despite these perturbations.

In the recent paper [10] an interesting example of a system with dynamical symmetry
of a quantum universal enveloping algebra is presented. Namely, a Josephson junction and
a system of coupled Josephson junctions are considered. The quantum universal enveloping
algebra describing dynamical symmetry of the system may be understood on the one hand
as a deformation of the Weyl algebra or, on the other hand, as a contraction of the quantum
enveloping algebra suq(2), itself a quantum deformation of the enveloping algebra of su(2).
Since our main examples are also built around the quantum group SµU(2) (though we rather
use the dual language of algebras of functions on the groups and their deformation, instead of
the universal enveloping algebras and their deformations) this example provides a hint on how
a realistic system with dynamical symmetry of a quantum group could look. Additionally, the
example discussed in [10] provides a physical interpretation of the deformation parameter. In
this case it is q = eiw, w = (8Ec/EJ)

1/4, where Ec = x2

2Ct
, e is the electron charge, Ct is

the total capacitance and EJ is the Josephson coupling energy. (To be completely honest, the
parameters in the two deformations connected with the SU(2) group are quite different since
q ∈ U(1), and µ ∈ [−1, 1] − {0}.)

The plan of this paper is as follows. In the second section we define and briefly discuss
the notion of dynamical symmetry connected with quantum groups. In the third section we
formulate and prove the main theorems concerning error protected states. In the fourth section
we present simple examples to illustrate the general results. We conclude the paper with the
discussion of possible extensions of this work. In appendices A and B we give a very brief
review of the basic material on quantum groups and their representations.

2. Dynamical symmetry connected with quantum groups

Symmetry proved to be one of the basic notions in physics. Dynamical symmetry of a
physical system is defined in terms of its Hamiltonian, which should be expressible as a linear
combination of operators generating a representation of the appropriate Lie algebra. There is
a large class of systems possessing such a property. Dynamical symmetry of a system should
not necessarily be visible at first sight. Nevertheless, searching for such a symmetry is highly
rewarding, since one can apply to those systems with a dynamical symmetry powerful methods
developed on the ground of the theory of Lie algebras and their representations, like the method
of coherent states [11]. Dynamical symmetry also proved to be important in searching for
physical systems possessing very specific quantum states—which cannot be corrupted despite
their interaction with the environment [6, 7]. Such systems provide noiseless quantum codes
that are of potentially great interest for constructing quantum computers. Noiseless quantum
codes can be either an alternative to error correcting codes, which are elaborate methods of
coding information, recognizing errors and correcting them [2–4], or a valuable supplement
to such codes.

It turns out that analogous codes exist for systems with dynamical symmetry based on
quantum groups instead of Lie groups. The goal of this section is to define the notion of
dynamical symmetry associated with quantum groups. In the next section we shall apply our
new concept of dynamical symmetry to prove our main theorems concerning error protected
states. Then, we shall study some systems providing noiseless quantum codes.

Basic mathematical concepts and tools that will be used in this paper are briefly presented
in appendices A and B.
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A generalization of the concept of dynamical symmetry can be defined only when there are
well established notions of a Lie algebra, and the corresponding universal enveloping algebra,
associated with a given quantum group G. In the theory of quantum groups, all these notions
essentially depend on an appropriately chosen differential calculus over G.

The quantum group G will be represented by a non-commutative C∗-algebra A, playing
the role of the algebra of ‘continuous functions’ defined on the quantum space G, together
with a coproduct map φ:A → A ⊗ A (corresponding to the standard product in the case of
classical groups). Effectively, all calculations will be performed within an everywhere dense
*-subalgebra A ⊆ A, playing the role of polynomial functions over G. Actually, A is a Hopf
*-algebra in a natural way.

Suppose that onG is defined a *-covariant, left-covariant first-order differential calculus�.
LetL be the associated quantum Lie algebra. If the calculus� is in addition right-covariant, we
can introduce the universal enveloping algebra U(L). Every representation v : V → V ⊗ A
of G in a finite-dimensional vector space V naturally induces (as in the classical theory) a
representation δ = δv of L and U(L) in V .

Definitions of all these objects are outlined in appendices A and B.
We consider an open quantum system, represented by a Hilbert state space V = HS.

The system interacts with its environment (bath) which is described by a Hilbert space HB.
Here it is assumed for simplicity that all Hilbert state spaces are finite-dimensional—however,
everything could be incorporated into the infinite-dimensional case.

Definition 2.1. We say that a system has quantum dynamical symmetry described by the
quantum group G and its quantum Lie algebra L if the following conditions are satisfied:

(i) The evolution of the system is governed by the Hamiltonian

H ∈ End(HS ⊗HB)  End(HS)⊗ End(HB).

(ii) The Hamiltonian is a Hermitian operator H∗ = H.
(iii) The Hamiltonian is of the form:

H = P1(l1, . . . , ln)⊗ T1 + · · · + PN(l1, . . . , ln)⊗ TN (2.1)

where P1, . . . , PN are polynomial expressions of infinitesimal generators li = δ(ei) and {ei}
is a basis in L. Finally T1, . . . , TN are Hermitian operators

Tα:HB → HB.

Such systems with quantum dynamical symmetry can be explored by generalized methods
known from the theory of systems with classical dynamical symmetry, for example by the
method of quantum coherent states [12]. Let us observe that the terms in (2.1) can be
reorganized in such a way that the Hamiltonian takes a more familiar form:

H = HS ⊗ id + id ⊗ HB + HI (2.2)

where HS is the system’s Hamiltonian, HB is the Hamiltonian of the environment and HI is
the ‘interaction Hamiltonian’ uniquely defined as the part of H traceless in both tensor factors.

3. Error protected states and noiseless quantum codes

In this section we present our main theorems on error protected states, and on noiseless quantum
codes. We assume that we deal with a (open) quantum system with dynamical symmetry of
a quantum group, and all other features as described in the previous section. The vectors that
are v-invariant, where v is a representation of the quantum group G, are of vital importance
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for our further discussion. Let us give their definition now. Let v:V → V ⊗A be an arbitrary
representation of G in a finite-dimensional vector space V , and let δ = δv:L → End(V ) be
the associated representation of L. To further simplify our considerations, we shall consider
the case when the quantum group is ‘connected’ in the sense that only scalar elements of A
are annihilated by the differential d: A → �.

Then the following equivalence holds for every vector ψ ∈ V :

v(ψ) = ψ ⊗ 1 ⇔ δ(x)ψ = 0 ∀x ∈ L.
Let us assume that the calculus � is, in addition, bicovariant. This enables us to introduce

the quantum universal enveloping algebra U(L), and to discuss the representations of U(L)
associated with the representations of the quantum group G. Let us also introduce the map
χ :U(L) → C, with the properties χ(L) = 0, χ(1) = 1, extended then to the whole U(L) by
multiplicativity. The representation δ uniquely (as in the standard theory) extends from L to
U(L). The above two conditions are further equivalent to

δ(q)ψ = χ(q)ψ ∀q ∈ U(L).
The proof of these equivalences is quite straightforward, but it needs some additional

definitions and constructions, which we would rather skip in this paper as they are going too
far in the formalism. Vectors satisfying any of the above conditions are called v-invariant.
The v-invariant vectors are very important for the study of quantum registers (which are open
systems with a quantum dynamical symmetry). Such vectors give us examples of the error
protected states.

Our main theorem is:

Theorem 3.1. Unitary evolution described by the Hamiltonian H possessing a quantum
dynamical symmetry given by (G,L) preserves the v-invariant vectors and associated states
of the system, even when the other states of the system are corrupted due to decoherence.

Proof. Let us take as an initial vector ψ ⊗ ζ ∈ HS ⊗HB, where ψ is v-preserved in the sense
defined above. Then the unitary evolution defined by

U(t) = exp

(
− i

h̄
Ht

)
with H of the form (2.2) gives

exp

(
− i

h̄
Ht

)
(ψ ⊗ ζ ) = ψ ⊗ exp

(
− i

h̄
Heff t

)
ζ

where

Heff = χ(P1)T1 + · · · + χ(PN)TN .

This proves the statement. �

An interesting property of Heff is that the coefficients χ(Pi) should somehow reflect the
structure given by G and its Lie algebra L.

Now we can easily prove the generalization of theorems 1 and 2 given in [6]. We follow
the notation from [6]. Let ρS ∈ End(HS) and ρB ∈ End(HB) be the (mixed quantum) states
of the system and the environment, respectively. If the overall system is initially in the state
ρ(0) = ρS ⊗ ρB, then ρ(t) = U(t)ρ(0)U(t)+, so that the evolution is unitary. The induced
evolution on HS is given exactly as in [6] by Lt : ρS → trBρ(t), where trB is the trace over
HB. Then the following theorem is fulfilled:
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Theorem 3.2. Let MN be the manifold of states built over the space of vectors invariant under
the representation v, and ρS ∈ MN . Then for any initial bath state ρB the induced evolution
on HS is trivial:

Lt [ρS(t)] = ρS ∀t > 0.

Proof. Theorem 3.1 allows us to reduce the proof of 3.2 to the proof of the first theorem
of [6]. �

The invariant vectors are generalizations of the singlet states pointed out in [6] as the states
of the quantum register which are not corrupted by interaction with the environment.

We should stress that the Hamiltonian of the system + environment should not necessarily
contain terms with trivial representations in the space of the system and in the space of the
environment, so that it can be even of the pure interaction form.

Before we present simple examples illustrating the general theory and explicitly showing
the ‘error protected’ states, let us discuss the interesting question of the structure of the Hilbert
space of the quantum computer registers, and discuss their physical implications. The register
usually consists of a number of copies of the same quantum system, often having two possible
states, for example spin ‘up’ and spin ‘down’ (a qubit).

Dynamical symmetry is defined in the Hilbert space that originates from the Hilbert spaces
for individual qubits being described as carrier spaces of unitary representations:

vi :Vi → Vi ⊗ A i = 1, . . . , n

of our quantum group G.
The register Hilbert space is the tensor product of the representation spaces:

V = V1 ⊗ V2 ⊗ · · · ⊗ Vn
in which G acts by the direct product

v = v1 × v2 × · · · × vn
of representations vi . Each of the representations vi induces a representation δi of the
corresponding quantum universal enveloping algebra. The representation v induces the
representation δ of the quantum universal enveloping algebra, and one can easily prove the
following relation:

δ(x)(φ1 ⊗ · · · ⊗ φn) =
n∑
k=1

∑
α∈I [k]

φ1 ⊗ · · · ⊗ δk(xα)φk ⊗ ηαk+1 ⊗ · · · ⊗ ηαn (3.1)

where

τn−k({φk+1 ⊗ · · ·φn} ⊗ x) =
∑
α∈I [k]

xα ⊗ {ηαk+1 ⊗ · · · ⊗ ηαn }

and τn−k:Vk+1 ⊗· · ·⊗Vn⊗L → L⊗Vk+1 ⊗· · ·⊗Vn are the appropriate ‘flip-over’ operators
naturally associated with the differential calculus (a bit more on these relations will be given
in appendix B).

The formula (3.1) differs from the corresponding formula for the classical case of addition
angular momenta in quantum mechanics (τ is just the standard transposition in the classical
case). It is easy to see that qubits in the register are not treated on the same footing. It could be
associated with some effects due to, but not taken into account in [6], the linear extension of the
register, or to fluctuations of the fields due to nonideal structure of boundaries of the register and
their influence. Anyway, it is possible to realize a system with weaker symmetry than the one
presented in [6] but still possessing error protected states. It is known that similar deviations
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from exact dynamical symmetry of Lie groups lead to better mass (or energy) formulae in both
nuclear/particle physics, and molecular physics [13, 14]. Therefore, one can look also among
such systems for possible candidates for registers of quantum computers.

In [6] a physically plausible conjecture was expressed, that small deviations from ideal
properties assumed of the system should lead to small errors in the error protected states.
Actually, we have shown that there exist systems with a special kind of deviation from the
assumed symmetry, which nevertheless still have error protected states.

4. Examples

Let us switch now to some simple examples that would highlight our general ideas. The
first example of a quantum group presented systematically in the literature was a quantum
version of the standard SU(2) group [15], where the theory of representations was developed
together with various geometrical aspects and a construction of a natural three-dimensional
left-covariant differential calculus. This calculus is not bicovariant, and the minimal dimension
for a bicovariant calculus over the quantum SU(2) is 4 (this four-dimensional calculus [16] is
analysed in detail in [18]). Generalization of the results concerning this particular quantum
group leads to the general theory of compact matrix quantum groups [16,19], the definition of
quantum spheres [20] and their geometry [21], the deep generalization of the Tannaka–Krein
duality [17], and also the theory of quantum principal bundles together with the corresponding
gauge theory on quantum spaces, first formulated in [22] and then developed systematically
in [23,24] (see also [25–27]). Also in the C∗-algebraic framework the quantum homogeneous
bundles were defined and the example of such a bundle with quantum spheres as fibres was
given [28]. Different approaches to quantum groups were developed in [29,30], where quantum
groups are treated from the point of view of deformations of universal enveloping algebras,
Yang–Baxter equations and completely solvable systems.

We shall use the quantum version of SU(2) in our examples. This is relatively simple
from a computational viewpoint, but highly non-trivial and very suggestive for the aims of this
paper. First, we remind ourselves of some basic facts about this group, which is denoted by
SµU(2). Here the deformation parameter µ takes the values µ ∈ [−1, 1] \ {0}, and µ = 1
corresponds to the classical SU(2) group.

In our further considerations the fact that irreducible unitary representations of SµU(2)
are classified by the half-integers, like the representations of SU(2), will play an important
role. The fundamental representation corresponds, as in the classical case, to spin j = 1

2 (see
appendix B for more details). The Clebsch–Gordan decompositions of tensor products of the
representations of the SµU(2) into irreducible representations look similar (concerning the
multiplicities of the appearance of irreducible components in the products of representations)
as in the classical case:

k︷ ︸︸ ︷
u× · · · × u =

⊕
j∈J

nj,kuj

with the numbers nj,k the same as in the classical case. In particular, the decomposition of the
second tensor power of the fundamental representation is u2

1/2 = u0 ⊕u1, where u0 and u1 are
the one-dimensional and the three-dimensional irreducible representations, respectively. One
can describe these representations more explicitly after introducing the orthonormal basis in
the representation space V = C

2 of u1/2, which will be denoted |+〉, |−〉 for the purpose of
being easily recognizable by physicists. The tensor square u2

1/2 is realized in V ⊗ V  C
4,

and the orthonormal basis in this space is |+〉 ⊗ |+〉, |+〉 ⊗ |−〉, |−〉 ⊗ |+〉 and |−〉 ⊗ |−〉. It is
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an easy exercise to find that the invariant subspaces of u2
1/2 are spanned by

1√
1 + µ2

(|+〉 ⊗ |−〉 − µ|−〉 ⊗ |+〉) (4.1)

and

|+〉 ⊗ |+〉
µ√

1 + µ2

(
|+〉 ⊗ |−〉 +

1

µ
|−〉 ⊗ |+〉

)
|−〉 ⊗ |−〉.

(4.2)

The formula (4.1) generalizes the standard singlet, and the formula (4.2) generalizes the
standard triplet. In analogy to the classical case the even tensor powers of the fundamental
representation decompose into irreducible representations in such a way that the one-
dimensional representation appears a number of times, and this number is identical as in
the classical case. These singlets will be preserved by the dynamics.

4.1. First example

In the first example we treat a system which is very similar to the one considered in [6]. Namely,
as a model of the environment (bath) we consider a system of harmonic oscillators, described
by the Hamiltonian

HB =
∑
k

ωkb
†
kbk

acting in the Hilbert space HB. The register consists in this simplest case of two qubits. In
contrast to the case considered by Zanardi and Rasetti [6], the system consisting of the register
and the bath has the dynamical symmetry not of the classical but of the quantum SU(2) group.
As already mentioned, in the quantum group context it is necessary to choose the differential
calculus, prior to establishing the notion of dynamical symmetry. The closest to the classical
case seems to be the introduction of the 3D left-covariant calculus [15]. In other words, the
quantum Lie algebraL is three dimensional. Let us denote byKi the operators representing the
basis vectors li in an arbitrary representation of L (here i ∈ {1, 2, 3}). The following recurrent
formulae enable us to compute explicitly the operators Ki in the arbitrary tensor product of
elementary two-dimensional representations (qubits):

K3(ψ ⊗ |+〉) = 1

2
ψ ⊗ |+〉 +

1

µ2
K3(ψ)⊗ |+〉 (4.3)

K3(ψ ⊗ |−〉) = µ2K3(ψ)⊗ |−〉 − 1
2ψ ⊗ |−〉 (4.4)

Kj(ψ ⊗ |+〉) = 1

2
ψ ⊗ |+〉 +

1

µ
Kj(ψ)⊗ |+〉 (4.5)

Kj(ψ ⊗ |−〉) = µKj(ψ)⊗ |−〉 − 1
2ψ ⊗ |−〉 (4.6)

where j ∈ {1, 2}.
In such a case the bath-register interaction Hamiltonian which is the quantum group

analogue of the Hamiltonian used in [6] is

HI = K+ ⊗ T +K− ⊗ T † +K3 ⊗ T ′

whereK± = K1 ± iK2, and T , T ′ are operators acting in the bath Hilbert state-space. Relating
to the corresponding formulae in [6], the operators T and T ′ are obtained as the appropriate
linear combinations of the creation and annihilation operators describing relevant elementary
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excitations of the bath. The operators Kj are acting in the four-dimensional 2-qubit space.
In other words, it is formally of the same shape as in [6]. However, the ‘spin’ operators are
different, as explained above. The singlet state of the register is error-protected in the sense
discussed above.

4.2. Second example

In the second example the only difference to the first example is the register consists now of
any even number of qubits, instead of just two. The spin operatorsKj are referring to the total
register system, and are calculated by applying the above listed inductive rules (4.6).

It is important to stress that the number of singlet states is just the same as in the classical
SU(2) case. This is a consequence of the similarity mentioned between the representation
theories for quantum and classical SU(2) groups. The dimension of the singlet state space
depends on the number of qubits in the way described in [6]. All these states are clearly
protected from corruption due to decoherence.

4.3. Remark

The group SU(2) appears as a dynamical symmetry group mainly in the context of the
dynamics of spin systems. It appears less frequently in the context of dynamics of different
systems, like bosonic particles. Therefore, the examples usually begin with the fundamental
representation u1/2 of SU(2) as the elementary building blocks of the Hilbert space of the
system. However, such a fundamental block could be any of uj with j half-integer. Since, for
example, uj × uj contains the singlet u0 in its splitting into irreducible representations, this
could be a starting point for building error protected states with the help of bosonic particles.
Similar considerations are true also for the quantum group SµU(2). It seems, though, that a
physical realization of such systems is more complicated and creates more technical problems.
An inspiration in the search for physically relevant systems with such dynamical symmetry
may be the system considered in [10], which we discussed in the introduction.

Let us stress that in the examples we considered following [6], all qubits are coupled to
the same, coherent, environment. As was stressed in [31] coupling to the same environment of
the qubits gives more possibility of getting error protected states than coupling to independent
environments. However, our methods seem to be general enough to deal with the cases of
coupling with independent environments as well, until the system has a dynamical symmetry
of the type introduced in this paper.

5. Conclusions

In this paper we introduced the general notion of dynamical symmetry associated with quantum
groups and Lie algebras. Then we applied this notion to construct error protected states for
open systems with such symmetry. The states can be useful for quantum computation. They are
close analogues of their standard group theoretical counterparts. As a result, the error protected
states obtained in a strictly group theoretical dynamical symmetry context have counterparts
preserved when the symmetry is slightly deviated towards the quantum group theoretic one.
Recently various authors [32–36] introduced a technique of quantum computation which
dynamically eliminates errors, by a quantum counterpart of the classical so-called ‘bang-bang’
technique. Zanardi [37] has shown that the technique called ‘symmetrizing’ can be interpreted
group theoretically as control of the systems forcing the systems with dynamical symmetry of
a Lie group to be in states which are error protected. This very interesting observation should
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increase the interest in error avoiding quantum codes. Since mathematically the technique
seems to rely on invariant measures of the groups, it is applicable not only to the systems
with dynamical symmetry of finite groups discussed in this paper, but also to the systems with
dynamical symmetry of the compact (even locally compact) Lie groups, which all possess
the Haar measure necessary for such a construction. One should observe that the same is
also true for compact (or locally compact) quantum groups, since these objects possess a Haar
measure, too. It seems the generalization of the results by Zanardi to the quantum group case is
straightforward, but its physical interpretations are less clear. Work on this issue is in progress.
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Appendix A. Quantum spaces and quantum groups

The classical theorem by Gelfand and Naimark states that compact topological spaces are in
a natural correspondence with commutative unital C∗-algebras. These C∗-algebras consist of
continuous complex-valued functions on the corresponding spaces.

Let X be a compact topological space and C(X) be the associated algebra of continuous
complex-valued functions on X. The linear structure on C(X) is given by the obvious
conditions: (f + g)(x) = f (x) + g(x) and (αf )(x) = αf (x). The product in the algebra is
(f · g)(x) = f (x)g(x) and the *-involution is given by f ∗(x) = f (x).

There is a natural norm in C(X) given by

‖f ‖ = sup{|f (x)| : x ∈ X}.
In such a way is introduced a structure of (commutative)C∗-algebra inC(X). Conversely,

every commutative unitalC∗-algebra is of this form—according to classical Gelfand–Naimark
theory. Actually, the Gelfand–Naimark theory can be generalized to the level of locally compact
spaces, giving us a correspondence between arbitrary commutative (not necessarily unital)
C∗-algebras and locally compact topological spaces. This correspondence is functorial, in the
sense of category theory.

These facts lead to a generalized concept of space, which is understood as ‘the underlying
space’ of a general C∗-algebra, about which we no longer assume it should be commutative.
Generalized spaces of this type are called quantum spaces. The reason for the adjective
‘quantum’ follows from the observation that, as in the classical quantization scheme, a
commutative algebra of functions is substituted by a noncommutative algebra of operators
acting in a Hilbert space. The latter is indeed the case since all C∗-algebras can be realized as
algebras of operators acting in some Hilbert spaces.

Interesting algebra and geometry appears when the classical topological spaces are
equipped with an additional structure: differential-geometric, metric, Lie group, and so
on. A very important class of quantum spaces constitute the quantum groups, which are
understandable as quantum spaces equipped with a group structure.
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Let us explain now, very briefly, what exactly is a compact quantum group. Let us start
from a classical compact topological group G. This means that G is a compact topological
space equipped with a group structure, such that the product map ◦:G×G → G is continuous
(it can be shown that in the compact case continuity of the product implies continuity of
the inverse map). At the dual level, the product map is represented by a *-homomorphism
φ:A → A⊗ A, where A = C(G).

More precisely, we first naturally identify
k︷ ︸︸ ︷

A⊗ · · · ⊗ A = C(

k︷ ︸︸ ︷
G× · · · ×G) k � 2

and define

φ(f )(g1, g2) = f (g1g2) f ∈ A g1, g2 ∈ G.
The associativity property of the product is equivalent to the coassociativity property

(φ ⊗ id)φ = (id ⊗ φ)φ.
It can be shown that the remaining two group axioms (the existence of the neutral element and
the existence of the inverse elements) are equivalent to a single assumption that the elements
of the form aφ(b) as well as of the form φ(b)a, where a, b ∈ A, span two everywhere dense
linear subspaces of A⊗ A.

Generalizing this to the quantum level, we define a group structure on a quantum space
G as a *-homomorhism φ : A → A⊗ A such that the diagram

A
φ−−−−→ A⊗ A

φ

� �id ⊗ φ
A⊗ A −−−−→

φ ⊗ id
A⊗ A⊗ A

is commutative, and such that

A⊗ A =
{ ∑

aφ(b)|a, b ∈ A
}

A⊗ A =
{ ∑

φ(b)a|a, b ∈ A
}

where the bar means appropriate closure.
As a very important special case of this structure, let us mention matrix groups. These

structures are given by triplets (A, φ, u) consisting of a C∗-algebra A, a *-homomorphism
φ:A → A⊗ A and a matrix u ∈ Mn(A) (all n× n matrices with coefficients from A) which
is (together with the conjugate matrix ū) invertible inMn(A) and such that:

(i) The *-algebra A generated by the entries uij is everywhere dense in A.
(ii) The following identity holds:

φ(uij ) =
∑
k

uik ⊗ ukj .

In this case we have the inclusion

φ(A) ⊆ A ⊗alg A.
Let us stress that the above mentioned coassociativity and density properties are satisfied
automatically.
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Matrix quantum groups generalize compact Lie groups (if A is commutative the theory
reduces to standard compact matrix groups).

The algebra A plays the role of the algebra of polynomial functions over G. The matrix
u ∈ Mn(A) corresponds to the fundamental representation of the group G.

Appendix B. Differential calculus on quantum groups, quantum Lie algebras and
quantum universal envelopes

B.1. Quantum Lie algebras

There is a very important notion of a differential structure defined for quantum groups. The
definitions of a quantum Lie algebra and of a quantum universal enveloping algebra depend
on the differential calculus introduced. Therefore, we begin from giving the definition of the
differential calculus.

First-order differential calculi are defined as certain bimodules � over A, equipped with
a differential d: A → �. The space � is a noncommutative counterpart of the usual module
of 1-forms over a classical group, and d generalizes the standard differential of functions.

It is important to mention that there is not a unique prescription to construct a differential
calculus over a quantum group, and generally a given quantum group will possess a variety of
non-equivalent calculi, each of them having a potential significance. It is surprising that the
same situation appears in classical theory, where one can also use the methods of quantum
groups to construct new differential calculi over the standard Lie groups. This opens interesting
new possibilities in the study of classical Lie groups. In particular, it opens a possibility to
extend the notion of dynamical symmetry, in the framework of classical groups.

In the quantum group theory a special role is played by so-called left-covariant and
bicovariant differential calculi. Left-covariance of a differential calculus means [17] existence
of a left action of the group G on �, l�:� → A ⊗ �, such that for each a ∈ A and θ ∈ �
the following relations hold: l�(aθ) = φ(a)l�(θ), l�(da) = (idA ⊗ d)φ(a). If the module �
is left-covariant, then we can define its subspace �inv, consisting of left-invariant ‘1-forms’,
which means such 1-forms θ that l�(θ) = 1A ⊗ θ . Quantum Lie algebra is then defined as the
corresponding dual space: in other words L = �∗

inv. Right-covariance is analogously defined
as the existence of a right action r�:� → � ⊗ A with corresponding relations. Bicovariant
calculi are both left- and right-covariant [17].

If the calculus is bicovariant, then we can introduce a natural braid operator σ :L ⊗
L → L ⊗ L, generalizing the classical transposition. In such a case there exists, among
other structures, a map ãd:�inv → �inv ⊗ A generalizing coadjoint action and defining a
representation of G. There exists also an intertwining operator of second tensor power of the
representation ãd with itself. Its dual is then defined as a map σ :L ⊗ L → L ⊗ L. This
linear map satisfies a number of relations including the braid equation. Therefore it is a braid
operator canonically associated with any bicovariant differential calculus ofG. Furthermore, in
analogy with classical theory, we can define a quantum Lie bracket in the spaceL generalizing
the classical Lie bracket [17]. The Lie bracket is defined as a linear operator C:L⊗ L → L,
and we can equivalently write [x, y] = C(x ⊗ y). This bracket satisfies the appropriate
generalized Jacobi identity and braided-antisymmetricity conditions.

Following the classical theory, the quantum universal enveloping algebra for (L, [, ]) is
defined as a unital associative algebra U(L) generated by relations

xy −
∑
i

yixi = [x, y] (B.1)

where x, y ∈ L and
∑
i yi ⊗ xi = σ(x ⊗ y).
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B.2. Representations of quantum groups and quantum Lie algebras

Having the Lie bracket and using (B.1) one can define representations of quantum Lie algebras
and of the corresponding quantum universal enveloping algebras. It can be shown that
every representation v of G in a finite-dimensional vector space V naturally gives rise to
a representation S:U(L) → End(V ) of the quantum universal enveloping algebra. Namely,
let v:V → V ⊗ A be a (left) representation of the quantum group G in a finite-dimensional
complex vector space V , in other words v is linear, satisfies the condition

(id ⊗ φ)v = (v ⊗ id)v

and v is invertible, understood as an element of End(V ) ⊗ A. This corresponds to the
classical requirements on representations of groups saying that the product of group elements is
represented by composition of operators representing these elements, and the neutral element
of a group is represented by the identity operator.

Every representation v of G in V naturally generates a representation

δ = δv:U(L) → End(V )

of U(L) in V (if the differential calculus is bicovariant) or only of the Lie algebra L,
δ:L → End(V ) (if the differential calculus is left-covariant).

Moreover, if the differential calculus is *-covariant, which means that in the module �
of 1-forms is defined the ∗-operation ∗:� → � induced by ∗ in A, it makes sense to speak
about hermiticity of the representation δ. Namely, the ∗-operation on � naturally induces
the ∗-structure on the quantum Lie algebra L, via the formula 〈f ∗, ψ〉 = −〈f,ψ∗〉 where
f ∈ L = �∗

inv and ψ ∈ �inv. The formula (3.1) can be derived using the standard formula
defining the tensor product of representations of G, in particular for the tensor power of
a representation of G with itself, which describes a situation frequent in physics in which
a system of identical quantum particles (e.g. spins) is described. Using similar methods
as in deriving the formula (B.1) one can find the operators τn−k({φk+1 ⊗ · · ·φn} ⊗ x) =∑
α∈I [k] x

α ⊗ {ηαk+1 ⊗ · · · ⊗ ηαn } and τn−k:Vk+1 ⊗ · · · ⊗ Vn ⊗ L → L⊗ Vk+1 ⊗ · · · ⊗ Vn and
prove the formula (3.1)

B.3. Quantum SU(2) group

This quantum group is based on aC∗-algebraA generated by elements {α, α∗, γ, γ ∗} satisfying
the following relations:

αα∗ + µ2γ ∗γ = 1

α∗α + γ ∗γ = 1

γ ∗γ = γ γ ∗

αγ = µγα

αγ ∗ = µγ ∗α
where µ ∈ [−1, 1] \ {0}. The comultiplication φ:A → A⊗ A is given by

φ(α) = α ⊗ α − µγ ∗ ⊗ γ
φ(α∗) = α∗ ⊗ α∗ − µγ ⊗ γ ∗

φ(γ ) = γ ⊗ α + α∗ ⊗ γ
φ(γ ∗) = γ ∗ ⊗ α∗ + α ⊗ γ ∗.

The theory of representations of SµU(2) is very interesting from the point of view of
our examples. This theory has many similarities to its classical counterpart—the theory of
representations of SU(2). Classical SU(2) is obtained as a special case µ = 1.
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The fundamental representation of SµU(2) is defined by the matrix

u =
(
α −µγ ∗

γ α∗

)
.

It is easy to see that the defining relations for SµU(2) are equivalent to the unitarity property

u∗u = uu∗ =
(

1 0
0 1

)
.

The fundamental representation enables us to build all other representations by using direct
sums, tensor products and reduction procedures. Irreducible representations uj are numbered
by half-integers j , and are (2j + 1)-dimensional. Every representation of an arbitrary compact
quantum group can be decomposed into irreducible ones.
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